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Abstract. When modelling contamination transport in the subsurface and aquifers, it is crucial to assess the heterogeneities of 

the porous medium, including the vertical distribution of the aquifer parameter. This issue is generally addressed thanks to 

geophysical investigations. 

As an alternative, a method is proposed using inversion data from a 2D calibrated flow model (solely reliant on piezometric 

series) as parameterization constraints for a 3D hydrogeological model. The methodology is tested via a synthetic model, 10 

ensuring full knowledge and control of its structure. The synthetic aquifer is composed of five lithofacies, distributed according 

to a sedimentary pattern, and functions in an unconfined regime. The level of heterogeneity for hydraulic conductivity spans 

three orders of magnitude. It provides the piezometric chronicles used to inverse 2D flow parameter fields and the lithological 

logs used to interpolate the 3D lithological model. Finally, the parameters of each facies (hydraulic conductivity and porosity) 

are obtained through an optimization loop, that minimizes the difference between the 2D calibrated transmissivity and the 15 

transmissivity computed with the estimated 3D facies parameters. 

The method estimate parameters close to the known initial parameters, even with sparse piezometric and lithological data 

sampling. The maximal discrepancy is 61 % of the initial value for the permeability and 16 % for the porosity (mean error 

18 % and 4 %, respectively). Although the methodology does not prevent interpolation error, it succeeds in reconstructing 

flow and transport dynamics close to the control data. Due to the inherent limitations of the 2D inversion approach, the method 20 

only applies to the saturated zone at this point. 

1 Introduction 

To simulate contamination transport in the subsurface and aquifers, it is crucial to assess and reliably describe the 

heterogeneities of the porous medium. The development of inverse methods in recent decades is mainly based on two-

dimensional flow models and focused on the horizontal structure of heterogeneities with the collection of piezometric data as 25 

a cornerstone (Poeter & Hill, 1997; Carrera et al., 2005; Hendricks Franssen et al., 2009). But the latter is less sensitive to the 

vertical structure of the aquifer, leaving its estimation dependent on complex and expensive field methods – e.g. pumping tests 

(De Caro et al., 2020), tracer tests (Linde et al., 2006), electrical resistivity (Coscia et al., 2011; Priyanka & Mohan Kumar, 

2019), radar tomography (Boni et al., 2020), self-potential methods (Eppelbaum, 2021), crosshole testing (Klotzsche et al., 
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2013; Doetsch et al., 2010), hydraulic tomography (Sanchez-León et al., 2015; Luo et al., 2020; Fischer et al., 2020) – and/or 30 

laboratory analysis – e.g. grain-size analysis from core samples (Marini et al., 2018) and ex-situ permeability tests (Zhang & 

Brusseau, 2005). 

Less often, 2D simplifications can be used to sidestep the inconvenience of the geophysical and field approach (Harp et al., 

2008; Viaroli et al., 2019). In this line, we propose an original method using data from a 2D calibrated flow model (solely 

reliant on piezometric series) as parameterization constraints for a 3D hydrogeological model (resulting from interpolation of 35 

borehole data). The method is tested on a synthetic case test constituted by five hydrofacies, distributed according to a 

sedimentary pattern, with a level of heterogeneity for hydraulic conductivity spanning three orders of magnitude. 

To evaluate the methodology’s robustness, it is first carried out with a very profuse data sampling (piezometric for the 2D 

inversion; lithological for the 3D model interpolation), assessing the consistency between the different numerical codes. 

Second, a sparser sampling is tested to approximate more realistic field conditions. 40 

The detail of the methodology is described in Sect. 2, including the synthetic data framework, the mathematical background 

of the tools used, and the link between them. The results for both samplings concerning the inversions, the facies interpolation, 

and the final model outputs (in terms of parameter, piezometric series, and contamination plumes) are discussed in Sect. 3. 

2 Materiel and methods 

The methodology we propose and analyse in this paper is the following: 45 

1. Estimates of transmissivity from a 2D calibrated flow model based on piezometric heads. These transmissivities 

exist for each element of the 2D model. It is a huge data set constrained by the piezometric heads. 

2. Analysis of the aquifer lithology at boreholes. Lithology is usually described at each borehole. It provides a 

qualitative description of aquifer heterogeneity. This qualitative description can be interpreted in terms of facies. 

This description is used here to define an optimal number of facies that have been identified within the aquifer.  50 

3. The 3D discretization of the aquifer is a vertical extension of the 2D model. Facies are interpolated over the 3D 

domain based on the borehole local data.  

4. The hydraulic conductivity and porosity for each facies are estimated through optimization using the 2D data, 

which are vertical integrations of the 3D data. Optimization is required because the number of unknowns is quite 

small (twice the number of facies) compared to the number of constraints (twice the number of elements of the 55 

2D flow model at the most). Of course, the constraints are correlated through the flow model and cannot be 

considered independent. 

To evaluate this approach, we built a synthetic test case (Fig. 1) generated by: 

1. 3D aquifer design. 
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2. Computation of the 3D flow using TRACES (Hoteit & Ackerer, 2004). 60 

3. Selection of head data. 

4. Estimation of transmissivities and porosity by a 2D flow model calibration based on the selected head data using 

PINOGRI (Rambourg et al., 2020). 

5. Selection of boreholes for lithological data and facies definition. 

6. Design of the 3D facies distribution using GemPy (de la Varga et al., 2019) or Splines (Lee et al., 1997). 65 

7. Estimate the facies hydrodynamic parameters (hydraulic conductivity, porosity). 

8. Comparison of local hydrodynamic parameters and simulated water heads and concentrations between the “true” 

aquifer and the reconstructed (estimated) aquifer. 

 

Figure 1: Methodology flowchart – TRACES: Transport of Radioactive Elements in Subsurface (Hoteit & Ackerer, 2004); 70 
PINOGRI: Parameter Inversion Numerically Optimized for Groundwater Issues (Rambourg et al., 2020); GEMPY: Open-source 

3D geological modelling (de la Varga et al., 2019); SPLINES: QGIS/SAGA multilevel b spline interpolation (Lee et al., 1997). 

The computations are run on a PC with Intel(R) Core(TM) i7-6700 CPU @ 3.40 GHz processor and 16 Go RAM. 
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2.1 Synthetic three-dimensional dataset 

2.1.1 The aquifer model 75 

The synthetic aquifer consists of five hydrogeological facies (also referred to as hydrofacies) distributed along a sedimentary 

pattern over a 10x10 km area and 20 m depth (Fig. 2). 

Each hydrofacies is characterized by a hydraulic conductivity five times higher than the underlying facies (Tab. 1). Their 

porosity is less heterogeneous as it is defined in the range of permeable sedimentary materials (10 %–30 %). In practice, a 

hydrofacies is defined by clustering lithofacies with comparable hydrodynamic properties. The limitations and pitfalls inherent 80 

in this step are not addressed in this study, where it is assumed to be flawless. 

 

Figure 2: Synthetic aquifer. 

Hydraulics boundary conditions are of null-Neumann type (no flux) except the northwest corner where a 21 m head is imposed 

(Dirichlet boundary), acting as the outlet of the aquifer. A constant pumping (18 m3.h-1) is positioned in the  85 

 

southeast part of the model, intercepting the whole thickness. Boundary conditions for solute transport are purely advective. 

Table 1: Synthetic hydrofacies parametrization. 
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Facies F1 F2 F3 F4 F5 

Hydraulic conductivity [m.s-1] 1 × 10−5 5 × 10−5 2.5 × 10−4 1.25 × 10−3 6.25 × 10−3 

Effective (kinematic) porosity 10 % 15 % 20 % 25 % 30 % 

Global proportion1 51 % 26 % 10 % 7 % 6 % 

Superficial proportion2 10 % 20 % 23 % 24 % 23 % 

Recharge [mm.y-1] (% of rainfall) 21 (3 %) 43 (6 %) 64 (9 %) 86 (12 %) 107 (15 %) 

            1 Proportion of facies at the scale of the whole domain               2 Proportion of facies within the surface elements 

The aquifer is exclusively fed by rainfall (720 mm.y-1 on average), which is assumed homogeneous over the whole area. 

However, five different recharge patterns are imposed according to the most superficial facies, whose hydrodynamic 90 

parameters greatly influence the amount and dynamics of water infiltration. Thus, recharge zone 5 (formed by the most 

permeable surface facies) is subject to major and fast infiltration, in contrast to zone 1 (least permeable), where the seepage 

signal is very attenuated and spread over time (see Sect. 3). 

2.1.2 Piezometric and contamination data 

The behaviour of groundwater and dissolved contamination is computed using TRACES (Transport of Radioactive Elements 95 

in Subsurface) software (Hoteit & Ackerer, 2004). The three-dimensional flow model is the combination of the conservation 

of mass and Darcy’s laws, generalized to also apply to the unsaturated zone (Darcy-Buckingham law), resulting in the Jacob-

Richards equation (Eq. 1): 

𝜕𝜃

𝜕𝑡
+ 𝑠

𝜃

𝜙

𝜕ℎ

𝜕𝑡
− ∇ ∙ (𝐊∇ℎ) = 𝑓          (1) 

where 𝜃 and 𝜙 are the water content [-] and porosity [-], respectively, necessary to deal with the unsaturated zone. 𝑠 and 𝐊 are 100 

the specific storage coefficient [m-1] and hydraulic conductivity tensor [m.s-1], respectively. ℎ is the water head [m], and 𝑓 is 

the sink-source term [s-1]. 

To limit inconsistencies with the 2D inversion (where unsaturated flow is not addressed via a physical model), the 3D model 

is reduced to a fully saturated approach. Therefore, flow equation (Eq. 1) is simplified and shown with the adequate initial and 

boundary conditions as Eq. 2. 105 

{
 
 

 
 𝐒

𝜕ℎ

𝜕𝑡
− ∇ ∙ (𝐓∇ℎ) = 𝐹                                                       

ℎ(𝐱, 0) = ℎ0(𝐱)                              𝐱 ϵ Ω                         

ℎ(𝐱, 𝑡) = ℎ𝐷(𝐱, 𝑡)                          𝐱 ϵ Γ𝐷     𝑡 ϵ [0, 𝑇]   

𝐓∇ℎ(𝐱, 𝑡) ∙ 𝐧 = 𝑞𝑁(𝐱, 𝑡)              𝐱 ϵ Γ𝑁     𝑡 ϵ [0, 𝑇]   

        (2) 
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where 𝐒 is the storativity [-], equivalent to the effective porosity in an unconfined context. 𝐓 is the transmissivity [m2.s-1], the 

integration of the hydraulic conductivity over the vertical of the model. The dimensions of the sink-source term 𝐹 [m.s-1] are 

adjusted accordingly. 𝐱  is a position in Ω , the model domain, and ℎ0(𝐱) represents the initial conditions. Γ𝐷  and Γ𝑁  are 

partitions of the domain boundaries that correspond to Dirichlet and Neumann conditions, respectively, and 𝐧 is the unit vector 110 

normal to the boundary, counted positive outward. ℎ𝐷(𝐱, 𝑡) is the prescribed head value at the Dirichlet boundaries, and 

𝑞𝑁(𝐱, 𝑡) is the prescribed flux at the Neumann boundaries, both defined at each time 𝑡 of the simulated period 𝑇. 

The assumption of a locally constant transmissivity is satisfied, with water head variations of a maximum of 5.2 % (and 3.5 % 

on average) of the local mean water head. 

TRACES addresses the migration of contaminants via an advection-dispersion/diffusion equation, supporting adsorption, 115 

precipitation, and degradation (reactive transport) phenomena. However, the study considers one inert species, giving form to 

Eq. 3. 

{

𝜕(𝜃𝐶)

𝜕𝑡
− ∇ ∙ (𝜃𝐃∇𝐶 + 𝐪𝐶) = 𝑄            𝐪 = −𝐊∇𝐶  

𝐶(𝐱, 0) = 𝐶0(𝐱)                                      𝐱 ϵ Ω             

−(𝐃∇𝐶 ∙ 𝐧)𝐴(𝑡) + 𝐵(𝑡)𝐶 = 𝑞(𝑡)      𝑡 ϵ [0, 𝑇]      

        (3) 

Where 𝐶 is the solute concentration [kg.m-3], 𝐃 is the dispersion/diffusion tensor [m2.s-1], 𝐪 is Darcy’s velocity [m.s-1], and 𝑄 

is the solute sink-source term [kg.m-3.s-1]. 𝐶0(𝐱) is the initial concentration; 𝐴(𝑡), 𝐵(𝑡), and 𝑞(𝑡) are the parameters to define 120 

the boundary conditions (see Hoteit & Ackerer, 2004). 

The dispersion and diffusion parameters are set identically for all the facies (Tab. 2). 

Table 2: Transport parameters. 

Parameter 
Longitudinal Transversal dispersivity [m] Molecular diffusion 

dispersivity [m] (horizontal) (vertical) [m2.s-1] 

Value 1 0.1 0.1 10−9 

These parameters are transferred into the dispersion/diffusion tensor as shown in Eq. 4. 

𝜃𝐃 = 𝜃𝐷𝑚 ∙ 𝜏 + 𝐷𝑇‖𝐪‖𝛿𝑖𝑗 +
(𝐷𝐿−𝐷𝑇)𝑞𝑖𝑞𝑗

‖𝐪‖
     with     𝜏 =  𝜃

7/3

𝜙2⁄       (4) 125 

where 𝐷𝑚 is the molecular diffusion coefficient [m2.s-1], and 𝜏 is the tortuosity factor of the porous medium [-]. 𝐷𝑇  and 𝐷𝐿  are 

the transversal and longitudinal dispersivities [m], respectively, while 𝛿 is the Kronecker function, with 𝑖 and 𝑗 the position 

indexes in the tensors. 

TRACES is based on two solving methods: hybrid mixed finite elements and discontinuous finite elements. These numerical 

schemes ensure an accurate local mass balance, accommodating high levels of heterogeneity. 130 
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Hybrid mixed elements are used to solve the flow equation and the diffusive/dispersive component of the transport. A mass 

lumping formulation is used to limit the occurrence of numerical oscillations. The advective portion of the transport is solved 

using the discontinuous Galerkin method, which also prevents numerical oscillations in the simulations and strongly limits 

numerical diffusion. The mesh, as shown in Fig. 2, consists of 10,440 triangular prisms, 6,193 nodes, and 27,544 facies. The 

horizontal edges have a characteristic length of 500 m, while the vertical edges are 2 m long. 135 

The initial state of the water table is derived from a preliminary steady-state calculation involving averaged recharge. The 

aquifer is initially uncontaminated (𝐶0 = 0 over the whole domain) and undergoes a pollution episode from three surface 

sources (Fig. 2), each discharging 0.1 g.s-1 for 24 hours at the beginning of the computation. 

2.1.3 Sampling strategies 

Structural (hydrofacies) and piezometric data are sampled following two subsequent strategies in order to validate the method 140 

(Fig. 3). 

First, the methodology is conducted with a very dense data set to assess its potential under ideal conditions and verify the 

numerical approaches’ compatibility. The 400 control points of this sampling form a regular grid with a 500 m step length. 

The piezometric chronicles used for the inversion cover the nine years of simulation (see Sect. 3). 

Second, a sparser dataset is extracted to evaluate the method in more realistic conditions. The control points are reduced to 40, 145 

and the piezometric chronicles are shortened randomly (down to 2 years). Meanwhile, the hydrofacies logs extracted at the 

location of the control points are kept in their integrity. 

 

Figure 3: Samplings. 
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The sparse sampling is pseudo-random so that each recharge area is covered. The points at each corner of the model are kept 150 

to avoid extrapolation issues. The sparse sampling accounts for 10 % of the lithological information of the dense dataset and 

only 6 % of the water head data. 

2.2 Two-dimensional flow model’s inversion 

The sampled piezometric data are used as inversion constraints for the PINOGRI (Parameter Inversion Numerically Optimized 

for Groundwater Issues, see Rambourg et al., 2020) software, developed at ITES (Strasbourg). Water heads being less sensitive 155 

to the vertical heterogeneities of the porous media, the inversion approach is restricted to a two-dimensional scale, where heads 

are vertically averaged. 

2.2.1 The flow model 

Two-dimensional groundwater flow in the aquifer is described by a diffusion-type equation, akin to the TRACES approach, 

but with a constant head over depth assumption (Dupuit-Forchheimer’s hypothesis) reducing the problem’s dimension. 160 

The mathematical model is solved by a two-dimensional nonconforming finite element method (Crouzeix & Raviart, 1973), 

ensuring flux continuity, mass balance (like the finite volume method), flexibility in geometry, and rigorous computation of 

full tensor transmissivity (like conforming finite elements, as stated by Ackerer et al., 2014). The time discretization scheme 

is implicit, giving the direct problem the form of Eq. 5. 

𝐀ℎ𝑡 = 𝐹𝑡−1            (5) 165 

where ℎ is the water head vector at the calculation time 𝑡, and 𝐹 is the sink-source term vector produced at the previous time 

step. 𝐀 is the flow coefficient matrix, depending on the mesh geometry and the parameter vector. 

2.2.2 The inverse problem 

The groundwater flow parameters are estimated through the minimization of an objective function (Eq. 6) based on weighted 

least square (Carrera & Neuman, 1986; Tarantola, 2005). 170 

𝐽(𝐏) = (ℎ(𝐏) − ℎ∗)T 𝐖−1(ℎ(𝐏) − ℎ∗)         (6) 

where 𝐽 is the objective function, 𝐏 represents the vector of the parameters to be estimated, ℎ∗ is the measured piezometric 

head (obtained from vertical averaging of 3D sampled data), and ℎ is the corresponding simulated values. T is the transpose 

operator, and 𝐖 is the weighting matrices, depending on measurement errors, able to prioritize optimization effort on specific 

locations. In this study, the water head data are considered error-free, and the optimization is not spatially prioritized. 175 

Therefore, all data are weighted equally. Moreover, because no a priori hydraulic parameters information is added in the study, 

the objective function does not include the plausibility criterion of the Maximum Likelihood approach. 
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Due to the great number of parameters and measurements, the minimization of the objective function is led by a quasi-Newton 

method (Ackerer et al., 2014), which is less time-consuming compared to Gauss-Newton and other Jacobian-based approaches 

(Kitanidis & Lane, 1985). The gradient g and an approximate Hessian of the objective function are calculated using the discrete 180 

adjoint state method (Carter et al., 1974) and the limited memory BFGS (Broyden-Fletcher-Goldfarb-Shanno) algorithm (Byrd 

et al., 1995), respectively. The adaptive parametrization of the inversion can lead to a high number of degrees of freedom. 

Under such conditions, this set of techniques has been found more efficient than standard sensitivity approaches (Townley & 

Wilson, 1985). Finally, three stopping criteria are set to end the algorithm: (i) the objective function J or its gradient g is 

sufficiently low, (ii) the adjustment of the parameters 𝐏 or the optimization of 𝐽 between two iterations is too small, or (iii) the 185 

number of iterations has reached a user-set maximum. 

The parameter spatial pattern is inferred using an Adaptive Multiscale Triangulation (AMT - Majdalani & Ackerer, 2011; 

Hassane & Ackerer, 2017). The parameters, borne by the vertex of the AMT mesh, are interpolated into each element of the 

calculus mesh (see Fig. 4). If during the inversion process, the minimization criteria are not met at the scale of a parameter 

cell, the latter is divided into four, increasing the optimization’s degree of freedom. Refinement is halted either when the 190 

objective function at the element level drops below a user-defined threshold, when the number of iterations reaches a user-

defined maximum, or when the last iteration fails to produce a better optimization than the previous one. A detailed description 

of the mathematical developments and the algorithm can be found in Ackerer et al. (2014) and Hassane & Ackerer (2017). 

 

Figure 4: Inversion algorithm (adapted from Rambourg et al., 2020). 195 

A maximum of three adaptive multiscale iterations is set to ensure a satisfactory calibration while preventing 

overparameterization. 
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The boundary conditions of the 2D approach are exactly the same as in the 3D synthetic model. In contrast, the initial conditions 

cannot be integrally transposed, the knowledge of the water head being limited by data sampling. Thus, the initial water head 

for the 2D approach is derived from preliminary steady-state inversions constrained by time-averaged water head data.  200 

The parameter bounds of the inversion are 5×10-6 – 5×10-2 for the hydraulic conductivity [m.s-1] and 6 %–30 % for the porosity. 

2.3 Facies interpolation 

For comparison purposes, two interpolation methods are used to reconstruct the 3D facies distribution, both based on the 

sampled lithological logs. 

2.3.1 GEMPY (geostatistical interpolation) 205 

GemPy (de la Varga et al., 2019) is an open-source 3D geomodelling package written in Python. It specializes in the 

reconstruction of stratigraphic series, with the possibility of modelling complex environments by adding faults, folds, plutonic 

intrusions, and other anomalies. The mathematical background GemPy is a development of the work of Lajaunie et al. (1997; 

Lajaunie et al., 1997; Calcagno et al., 2008), using universal cokriging methods to interpolate potential fields (scalar fields). 

In the software, the interpolation concerns two types of data: isosurfaces (including the interface between stacked lithologies 210 

and the boundaries of fault planes or unconformities) on the one hand and surface orientation (the gradient of the said 

isosurfaces) on the other. This last source of data allows the computation of a very smooth and continuous sedimentary 

structure, which is rarely the case in other freeware geostatistical tools (dell'Arciprete et al., 2012; Langousis et al., 2017). In 

our case, the orientations (geological poles) are obtained by calculating the normal of the planes, defined by triangulation 

between the hydrofacies interfaces at the sampled data points. 215 

Being specialized in geological modelling, GemPy handles the second-order (weak) stationarity of universal kriging by 

assuming a linear trend in the mean value of the scalar field. In addition, the random function defined for universal cokriging 

does not bear any physical meaning as it only aims at ensuring equality at every point of the isosurface (no matter the value). 

Therefore, the cross-variogram, inherent to cokriging, cannot be empirically determined. Eventually, the shape of the surfaces 

mainly depends on the orientations provided and on an arbitrary spherical covariance function that only balances the relative 220 

weight of the surfaces and their orientation in the cokriging. 

A priori very time and memory consuming, the calculation of both the scalar fields and their derivatives is handled by the 

Theano Python library, which also allows developments toward stochastic modelling. A more precise description of the 

software is available in De la Varga et al. (2019). 

2.3.2 B-splines (deterministic interpolation) 225 

Splines methods are also suitable for the construction of sedimentary models characterized by smooth surfaces. By definition, 

their interpolation adjusts continuous polynomial equations to the data, ensuring no discontinuities and exact fitting (Prautzsch 

et al., 2002). 
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This deterministic alternative is carried through a GIS procedure (QGIS/SAGA multilevel b spline interpolation – Lee et al., 

1997). To avoid anomalies in the stacking of the facies, the interpolation is carried on their thickness instead of their 230 

boundaries’ z-coordinates. In addition, the first underlying facies is not interpolated but considered as the background (filling) 

lithology. 

2.4 Hydrofacies parametrization and 3D simulations 

The lithological models resulting from the interpolations do not have any assigned hydrodynamic parameters. To attribute the 

said parameters to each hydrofacies, an optimization procedure is implemented. 235 

The optimization aims to find the permeability of each of the five facies for which the sum of the differences between the 2D 

inversion transmissivities and the 3D transmissivities is the lowest (Fig. 1). Both previous steps of the methodology draw 

continuous data over the model (2D averaged parameters on the one hand and lithological structure on the other). Conceptually, 

the optimization could be performed with as many constraints as the resolution of the mesh allows. However, the inversion 

and interpolation errors are minimal at the sampled data location. Therefore, the algorithm is carried out only with the 240 

parameter values and the lithological successions in these locations. The optimization is handled thanks to a Levenberg-

Marquardt algorithm. 

Once the 3D model is parametrized, flow and contamination simulations are carried out with TRACES, as described 

previously. The boundary conditions and the recharge distribution are kept unchanged from the initial synthetic model. 

However, the initial state data are directly taken from the 2D inversion simulations to avoid the propagation of lithology 245 

interpolation and parametrization errors in the initial water head fields. 

3 Results and discussion 

3.1 Calibrated 2D models 

The inversion algorithm is run 80 times for each sampling case to gather a set of possible solutions to the inverse problem, a 

model inversion lasting approximately 1 hr on average in these conditions. Each set of solutions is called a batch. 250 

To avoid overparametrization, the adaptive refinement of the parameter grid, initially composed of 21 nodes (i.e., degrees of 

freedom for the minimization), is limited to three iterations. The number of new parameter vertices is also constrained by the 

number and location of the piezometric control points. Therefore, the final average number of parameter nodes is 497 for the 

dense sampling (400 control points) and 74 for the sparser sampling (40 control points). 

Each solution batch produces very stable parameter fields (Tab. 3) and piezometer chronicles with a mean absolute discrepancy 255 

of less than 5 mm compared to the sampled data. For the sparse sampling, the mean absolute error increases to 37 cm when all 

control points from the dense sampling are included in the evaluation. 
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Table 3: Parameter variability between solutions in each batch 

 
Transmissivity 

relative standard deviation 

Porosity 

relative standard deviation 

 Mean Max Mean Max 

Dense sampling 0.5 % 8.7 % 1.0 % 22.1 % 

Sparse sampling 0.2 % 2.1 % 1.5 % 23.4 % 

 

The mean relative standard deviation of the parameter at the element mesh scale stays at a very low level in both cases. The 260 

variability of transmissivity is even lower for the sparse sampling (0.2 % vs. 0.5 %), as it has fewer degrees of freedom. 

The consistency between the estimated and the “true” synthetic parameters is described in Sect. 3.3. 

3.2 Three-dimensional interpolations 

As the synthetic model is shaped according to a simple sedimentary pattern (absence of faults), both interpolation methods 

(geostatistical and deterministic) produce results of similar quality.  265 

Differences in the facies composition of the models are marginal, even with a sparse distribution of the conditional data 

(Tab. 4). 

Table 4:Facies proportion in output models 

 Global proportion Superficial proportion 

 Data GemPy B-splines Data GemPy B-splines 

Facies  dense sparse dense sparse  dense sparse dense sparse 

1 51 % +2 % = = -1 % 10 % +3 % -3 % -2 % -3 % 

2 26 % -2 % -1 % = +1 % 20 % -2 % +2 % +2 % +3 % 

3 10 % = +1 % = = 23 % -1 % +1 % -1 % = 

4 7 % = -1 % = = 24 % +1 % -5 % +1 % -4 % 

5 6 % = +1 % = = 23 % -1 % +5 % = +4 % 

 

The consistency of the surface facies’ proportions mirrors the overall good reproduction of the aquifer’s structure (Fig. 5). 270 
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Figure 5: Facies distribution of the models 

The two percentages accompanying each model in Fig. 5 represent the ratio of the elements incorrectly parameterized for the 

whole data set and the conditional data, respectively. With a dense core sampling, the deterministic approach yields slightly 

better results than the geostatistical one (4.0 % vs. 6.9 % of elements parametrized with the wrong facies). The GemPy 275 

algorithm handles sparser constraints better, with no error at the conditional data locations and an overall ratio (8.5 %) almost 

equal to the dense model. 

3.3 Parameter comparison 

In view of the very low dispersion of the inverse models (Tab. 3), only the solution with the lowest objective function of each 

batch is kept to parametrize the facies. The resulting optimized 3D hydrodynamic parameters are shown in Tab. 5. 280 

In all cases, the hydraulic conductivity of the facies stays in the same order of magnitude as the synthetic data, and most errors 

are below 0.05 log units. The largest discrepancy is expressed on facies 3 of the sparse GemPy model, at 0.41 log units, 

meaning an estimated value of only 61 % below the data value. The gaps between the data and the estimated porosity are also 

very thin, with a maximal error of 3.1 % (i.e., 16 % of the data value). These very consistent results are due to the fact that the 

parametrization optimization is carried out with input at the sampled data location, where the errors, both on the 2D parameters 285 

and the 3D facies vertical distribution, are minimal. 
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Table 5: Calibrated and synthetic facies parameter comparison 

permeability discrepancies = log10(Kcalibrated) – log10(Kdata) | porosity discrepancies = Scalibrated – Sdata 

 Permeability (K) Effective porosity (S) 

 Data GemPy B-splines Data GemPy B-splines 

Facies log10 dense sparse dense sparse  dense sparse dense sparse 

1 -5 +0.04 +0.02 -0.01 -0.05 10 % +0.3 % = +0.1 % = 

2 -4.3 +0.02 +0.10 +0.02 +0.01 15 % -0.3 % +0.2 % = +0.6 % 

3 -3.6 +0.05 -0.41 = +0.01 20 % +1.9 % -1.7 % = -3.1 % 

4 -2.9 +0.04 -0.14 -0.01 -0.10 25 % -1.8 % +1.2 % +0.1 % +0.8 % 

5 -2.2 -0.03 -0.07 -0.03 -0.04 30 % -0.1 % +0.4 % -0.8 % +1.4 % 

 290 

The conjunction of the few parameter discrepancies and facies misplacements results in transmissivity errors, as shown in 

Fig. 6. The transmissivity discrepancies are always below one order of magnitude and mostly below 0.2 log units. The highest 

deviations are located at the facies discontinuities, where interpolation issues occur the most (in the 2D inversion and the 3D 

reconstruction). However, the large-scale heterogeneities are very well reproduced in every case, notably in the models based 

on sparse data. 295 

The comparisons between the 2D inversion and the 3D parametrization show that the estimation errors in the former do not 

propagate entirely in the latter. Indeed, the errors of the inverse models are located not only at the interfaces between the large-

scale heterogeneities but also at smaller scales, within the heterogeneities, when the density of the constraint data is reduced 

(in the absence of local piezometric data, the hydrodynamic parameters are not constrained; see bottom left of Fig. 6). The 3D 

interpolation techniques are not subject to these small-scale errors as they generate very smooth and continuous facies 300 

distributions Fig. 5). Therefore, the final discrepancies are only at the transitions between the large-scale horizontal 

heterogeneities where the facies interpolation can slightly err. 
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Figure 6: Transmissivity discrepancies 

3.4 Piezometric heads comparison 305 

As a result of the good reproduction of the aquifer’s structure and parametrization, the simulated water heads show a very 

consistent pattern compared to the synthetic data set. The final piezometric state for each model is shown in Fig. 7 (central 

map). For comparison purposes, the water heads of the 3D simulation are averaged over the saturated thickness. 

The water head fluctuations are also very well reproduced over the entire period of simulation and for every recharge zone. 

Amongst the chosen chronicles, the piezometer identified with an asterisk is not kept as constraint data in the sparse sample. 310 

In those cases, the models show larger deviations, but within moderate limits, the absolute error averaged over the period is 

always below 1.5 m. The mean absolute errors of each model are 14.9 and 46.2 cm for the GemPy models (dense and sparse, 

respectively), and 13.7 and 34.3 cm for the B-splines. 
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Figure 7: Piezometric comparison 315 
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The deviations mainly take the form of a shift (by excess or by default) in the base level when the fluctuations are consistently 

well reproduced. Overall, the parametrization discrepancies are too small to significantly modify the flow dynamics. But 

combined with the small differences in the model’s composition (Tab. 4), the water head equilibrium is slightly shifted as 

shown in the charts. Therefore, a more significant deviation would occur in a permanent flow simulation (with averaged 

recharge). In the given examples, the most noticeable diverging trends impact the GemPy sparse model in the P3* and P6* 320 

chronicles due to the significant error on the hydraulic conductivity of facies 3 (-0.41 log unit). 

As in the case of the parameters, the water heads error’s structure of the 3D models differs from the 2D models. While the 

inversion can yield discrepancies in locations far from its control points, the final 3D models can produce better results (P5), 

capitalizing on the smoothness of the interpolation methods. 

Meanwhile, a small recharge still generates significant piezometric fluctuations (e.g., P2 and P7) due to the lower porosity of 325 

the facies concerned. 

3.5 Contamination comparison 

Following good piezometric reproduction, the solute transport simulations show great similarity with the synthetic data, as 

depicted on the 0.1 g/l iso-concentration lines maps (right part of Fig. 8). 

The models’ output differences are attributable to parameterization errors on individual facies and the accumulation of 330 

hydrodynamic deviation upstream of each surveyed location. For instance, the source S3 spills into the third hydrofacies, for 

which the sparse GemPy model is characterized by lower storativity (-1,7 %) and permeability (-0.41 log unit); hence, the 

higher spike and slower depletion rate. The sparse B-splines model, showing only a lower storativity (-3.1 %), yields an even 

higher spike but the same curve slope as the initial data. In contrast, the parameter discrepancies for the 1st hydrofacies are 

marginal, but S1 depletion curves show significant differences due to errors of facies distribution upstream. 335 

Even if concentrations are more sensitive to parametrization than piezometry, the contamination dynamic is reproduced well 

overall by each model, including its vertical dimension (I2, I3). Part of the transport phenomenon is driven by dispersion and 

molecular diffusion, as demonstrated by the D curves, positioned slightly upstream and below S1. Eventually, the breakthrough 

curves E show that the mean value of each model’s parametrization is very close to the initial synthetic data as the outlet 

integrates all upstream data. 340 
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Figure 8: Contamination output 
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4 Conclusions 

A method has been developed to assess 3D aquifer parametrization by combining the strength of 2D hydrodynamic parameters 345 

estimated by model calibration and 3D facies interpolation. While this kind of modelling is generally based on a heavy 

geophysical survey, the proposed methodology is based solely on piezometric series and geological logs (commonly available 

at the same locations). Both 2D flow model calibration and 3D interpolation parts of the algorithm are independent. Therefore, 

the approach is not restricted to the tools described in the article (i.e., other interpolation methods than GemPy and B-splines 

can be used). 350 

The synthetic test carried with a relatively sparse dataset yields a consistent hydrodynamic parametrization (highest 

discrepancy: 61 % of the initial value for permeability, 16 % for effective porosity) and quite low errors in facies distribution 

(10.8% of misplaced facies at the most). Subsequently, the reconstructed piezometric series show very consistent dynamics 

with a maximal mean difference of 46 cm, mainly due to shifting the base level, while the fluctuations and the hydraulic 

gradients are generally unaltered. Moreover, the simulated contamination plumes and breakthrough curves are quite similar, 355 

especially at the outlet, since the average value of the aquifer parameter is well conserved. 

However, in a field context, the method is very dependent on the characterization of the hydrofacies and the quality of the 

piezometric survey. This step was not addressed in this paper but should be subject to development, aiming at optimizing the 

number and clustering of lithofacies integrated to the algorithm. In addition, the 2D inversion approach renders the method 

only applicable on confined and pseudo-unconfined cases. 360 
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